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Abstract. In this paper, we discuss the variational inequality problems VIP(X, F), whereF is a
strongly monotone function and the convex feasible setX is described by some inequaliy constraints.
We present a continuation method for VIP(X, F), which solves a sequence of perturbed variational
inequality problems PVIP(X, F, ε, µ) depending on two parametersε > 0 andµ > 0. It is worthy
to point out that the method will be a feasible point type whenε = 0 and an infeasible point type
whenε > 0, i.e., it is a combined feasible–infeasible point (CFIFP for short) method. We analyse
the existence, uniqueness and continuity of the solution to PVIP(X, F, ε, µ), and prove that any
sequence generated by this method converges to the unique solution of VIP(X, F). Moreover, some
numerical results of the algorithm are reported which show the algorithm is effective.

Key words: Variational inequality problems, Strongly monotone function, Combined feasible–
infeasible point method, Continuation method

1. Introduction

We consider the following variational inequality problem (VIP for short) which is
to find a vectorx∗ ∈ X such that

VIP(X, F ) F(x∗)T (x − x∗) > 0,∀ x ∈ X, (1)

whereF : Rn → Rn is a given function andX ⊆ Rn is called the feasible set of
VIP(X, F ) .

It is well known that VIP is a very important research area since it has numerous
applications in both mathematics itself and economics. Many social and economic
models, convex mathematical programming and so on can be considered as special
cases of VIP, the more concrete applications can be seen in [1, 2]. For examples,
if X is an open set (exampleX = Rn), VIP(X, F ) is to find x∗ ∈ X such that
F(x∗) = 0; if X = Rn+ := {x ∈ Rn | x > 0}, VIP(X, F ) is equivalent to the
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following nonlinear complementarity problem (NCP for short) of finding a vector
x ∈ Rn such that

NCP(F ) x > 0, F (x) > 0, xT F (x) = 0

On the other hand, the nonlinear programming problem (NLP) is also closely
related to VIP. IfF(x) is a gradient function of some real-valued functionf :
Rn → R′, then VIP(X, F ) is equivalent to the stationary condition of the optim-
ization problem: min{f (x) | x ∈ X}. In this paper, we restrict the feasible setX of
VIP(X, F ) to the following form which arises in many applications:

X = {x ∈ Rn | gi(x) > 0, i ∈ I }, I = {1, . . . , m} (2)

wheregi : Rn → R1 (i ∈ I ) are assumed to be concave and continuous differ-
entiable real-valued functions. Harker and Pang [2] showed that VIP(X, F ) and
the following mixed NCP are completely equivalent under the linearly independent
constraint qualification:

NCPF(x)−∇g(x)y = 0, gi(x) > 0, yi > 0, yigi(x) = 0, i ∈ I, (3)

where∇g(x) = (∇g1(x), . . . ,∇gm(x)) denotes the gradient matrix. Hence one
can obtain the solution and properties of VIP(X, F ) by studying and solving NCP,
and the continuation method is a kind of this type, it usually solves VIP (i.e., NCP)
throught solving a sequence of perturbed VIP (in short, PVIP) containning some
parameters. Kanzow and Jiang [3] and Chen and Harker [4] considered the follow-
ing PVIP problems denoted here as PVIP1(X, F, µ) and PVIP2(X, F, ε1, ε2, µ),
respectively, where(ε, ε1, ε2, µ) > 0 :

PVIP1(X, F,µ)
F(x) −∇g(x)y = 0, gi(x)− zi = 0,
yi > 0, zi > 0, yizi = µ, i ∈ I.

PVIP2(X, F, ε, µ)
F (x)+ ε1x −∇g(x)y = 0,
gi(x)+ ε2yi > 0, yi > 0, yi(gi(x)+ ε2) = µ, i ∈ I.

Obviously, the sequence of solutions of PVIP1(X, F, µ) which approaches the
solution of VIP(X, F ) belongs to the feasible setX, and the method in [3] is a kind
of feasible point algorithm. In contrast, Chen and Harker,s method [4] generates
infeasible points sinceε2 > 0.

In this paper, motivated by the ideas of [3, 4], we introduce a similar PVIP(X, F ,
ε, µ) which unifies automatically the feasible point and infeasible point continu-
ation methods, i.e., the solution of PVIP(X, F , ε, µ) belongs to the feasible set
X for suitable perturbed parameters and is out ofX for others. Furthermore, the
PVIP(X, F, ε, µ) does not contain the surplus variableszi used by Kanzow and
Jiang. A new continuation method for solving VIP(X, F ) is given with the help of
PVIP(X, F , ε, µ). We analyse and prove the existence, uniqueness, continuity and
convergence of the solution to PVIP(X, F, ε, µ).
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Throughout this paper, all vectors are column vectors, then-dimensional real
vector space is denoted byRn, the vector(xT , yT )T is usually abbreviated as(x, y).

2. The CFIFP continuation method

Throughout this paper, we assume the functionF is continuously differentiable
andgi(i ∈ I ) are concave and twice continuously differentiable. We first recall
some definitions and results which are well known.

DEFINITION 1. FunctionF : Rn → Rn is said to be strongly monotone (with
modulusα) over a setX ⊂ Rn if there exists anα > 0 such that(

F(x1)− F(x2)
)T
(x1− x2) > α‖x1− x2‖2,∀x1, x2 ∈ X. (4)

If X = Rn, we callF strongly monotone for short.F is assumed to be strongly
monotone with modulusα throughout this paper.

THEOREM 1 [2]. If X is a closed, convex, and nonempty subset ofRn, let function
F : X→ Rn be strongly monotone overX. Then VIP(X, F ) has a unique solution.

DEFINITION 2. A vectorx ∈ X = {x ∈ Rn | g(x) > 0} is said to satisfy the lin-
ear independence constraint qualification (in short, LICQ), or call the LICQ holds
atx, if the gradient vectors{∇gi(x) : gi(x) = 0, i ∈ I } are linearly independent.

We consider the following perturbed variational inequality problem which our
continuation method is based on, denoted by PVIP(X, F, ε, µ) :

F(x) −∇g(x)y = 0 (5)

gi(x)+ εyi > 0, yi > 0,
(
gi(x)+ εyi

)
yi = µ, i ∈ I (6)

with perturbation parametersε > 0, µ > 0.

REMARK 1. Although the perturbed formulas (6) have the same form as (9)
used by Chen and Harker [4], there are essential differences between them. The
parameterε in (6) above is allowed to be zero throughout this paper, and it must be
a strictly positive number in [4].

We can easily reformulate(gi(x)+ εyi)yi = µ as follows.

(gi(x)+ εyi)2+ y2
i + 4(gi(x)+ εyi)yi = 4µ+ (gi(x)+ εyi)2+ y2

i

(gi(x)+ εyi + yi)2 = 4µ+ ((1− ε)yi − gi(x))2

Notice foryi > 0, (gi(x)+ εyi) > 0, one obtains

Ji(x, y, ε, µ) := (1+ ε)yi + gi(x)−
√

4µ+ ((1− ε)yi − gi(x))2 = 0



200 JINBAO JIAN

Let J (x, y, ε, µ) = (Ji(x, y, ε, µ), i ∈ I ), then one has

LEMMA 1. For any parametersε ∈ R1 andµ > 0, equationsJ (x, y, ε, µ) = 0
and formula (6) are completely equivalent.

Proof.Suppose (6) holds, in view of above transformation, one can directly gets
J (x, y, ε, µ) = 0. Conversely, ifJ (x, y, ε, µ) = 0, then

(1+ ε)yi + gi(x) =
√

4µ+ ((1− ε)yi − gi(x))2 > √4µ > 0, i ∈ I
Furthermore, using the square of above equations, we have(gi(x) + εyi)yi =

µ > 0, i ∈ I . Combining this with(gi(x) + εyi) + yi > 0(i ∈ I ), one obtains
gi(x)+ εyi > 0, yi > 0(i ∈ I ). Hence formulas (6) hold. 2

From Lemma 1, one has directly the following result

THEOREM 2. Point (x, y) is a solution of PVIP(X, F, ε, µ) if and only if it is a
solution of the following system of nonlinear equations, denoted by8(x, y, ε, µ) =
0:

F(x) −∇g(x)y = 0 (7)

(1+ ε)yi + gi(x)−
√

4µ+ ((1− ε)yi − gi(x))2 = 0, i ∈ I (8)

As some more effective methods, such as Newton’s method and so on, to be
used to solve8(x, y, ε, µ) = 0, we must discuss the properties of the Jacobian
matrix of8(x, y, ε, µ). We first give the following Lemma which will be used in
the proof of Theorem 3.

LEMMA 2. LetH ∈ Rn×n be a positive definite matrix,R,D ∈ Rm×m be positive
definite and diagmal matrices, and letA ∈ Rn×m be an arbitrary matrix. Then the
following matrixM is nonsingular

M :=
(

H AR

−AT D

)
Proof.Letw = (x, y) ∈ Rn×Rm, andMw = 0. ThenHx+ARy = 0,−AT x+

Dy = 0. SoxT Hx = −xT ARy, xT A = yT DT . Using the assumed conditions and
this relations, one has: 06 xT Hx = −yT DTRy 6 0, which showsx = 0, y = 0.
ThusMw = 0 impliesw = 0, that isM is nonsingular. 2
THEOREM 3. The Jacobian matrices∇8(x, y, ε, µ)T of8(x, y, ε, µ) are nonsin-
gular for all (x, y) ∈ Rn × Rm+ and all ε > 0, µ > 0. If the functionsgi(x)(i ∈ I )
are affine-linear, then∇8(x, y, ε, µ) is nonsingular for all(x, y) ∈ Rn × Rm and
all ε > 0, µ > 0.
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Proof.For i ∈ I , denote

di := di(x, y, ε, µ) = (1+ ε)− (1− ε)yi − gi(x)√
4µ+ ((1− ε)yi − gi(x))2 (1− ε),

ri := ri(x, y, ε, µ) = 1+ (1− ε)yi − gi(x)√
4µ+ ((1− ε)yi − gi(x))2 ,

L(x, y) = F(x)−∇g(x)y,

R := R(x, y, ε, µ) = diag
(
ri, i ∈ I

)
,D := D(x, y, ε, µ) = diag

(
di, i ∈ I

)
.

Then the Jacobian matrices ofJ (x, y, ε, µ) and8(x, y, ε, µ) can be expressed
as follows:

∇xJ (x, y, ε, µ)T = (∇g(x)R)T ,∇yJ (x, y, ε, µ)T = D,

∇8(x, y, ε, µ)T =
( ∇xL(x, y) ∇g(x)R
−∇g(x)T D

)T
.

SinceF is strongly monotone andgi(i ∈ I ) are concave,∇F(x) is positive
definite and−∇2gi(x)(i ∈ I ) are positive semidefinite. SoH := ∇xL(x, y) =
∇F(x) −∑i∈I yi∇2gi(x) is positive definite for all(x, y) ∈ Rn × Rm+ . On the
other hand, in view of

γi := |(1− ε)yi − gi(x)|√
4µ+ ((1− ε)yi − gi(x))2

< 1,

we knowri > 1−γi > 0, i ∈ I . ThusR is positive definite for allε > 0, µ > 0 and
all (x, y) ∈ Rn×Rm. For matrixD, if ε = 1, thendi = 2> 0; if ε 6= 1(1−ε 6= 0),
thendi > 1+ ε − |1− ε| > min{2ε,2} > 0. SoD is positive definite too. Hence
the Jacobian∇8(x, y, ε, µ)T is nonsingular for all(x, y) ∈ Rn × Rm and all
ε > 0, µ > 0 since matricesH,R,D,A := ∇g(x) satisfy the conditions in
Lemma 2. 2

To conclude this section, we present the following continuation algorithm for
VIP(X, F ) (i.e., for NCP) based on the system of equations8(x, y, ε, µ) = 0
given by (7) and (8).

Initiation Step.Choose a stopping toleranceδ > 0 and an error function err(x, y)
(its specific construction can be seen from (17) in this paper or in [4]), choose any
initial point (xo, yo) ∈ Rn × Rm and any sequences{εk}, {µk} such that

εk > 0, lim
k→∞

εk = 0;µk > 0, lim
k→∞

µk = 0.
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Let k = 0 and go to Main Step.

Main Step.
(1) Starting with(xk, yk), solve equation8(x, y, εk, µk) = 0 approximately for

(xk+1, yk+1).
(2) If err(xk+1, yk+1) < δ, stop. Otherwise, letk := k + 1, go to Step (1).

THEOREM 4 [6]. Let (x∗, y∗) be a solution of8(x, y, ε, µ) = 0, i.e., it is a
solution of(7) and(8). Suppose one use Newton’s method to solve equation system
(7)–(8)with the initial point(xo, yo) located in a small neighborhood of(x∗, y∗).
Then this method will converge(x∗, y∗) at a quadratic rate.

3. Existence and uniqueness of a solution to PVIP(X,F, ε, µ)

In this section, we will prove PVIP(X, F, ε, µ) has a unique solution which is
continuous in the parameterµ for all ε > 0, µ > 0. We first discuss uniqueness
and continuity.

LEMMA 3. Letµ1 > 0, µ2 > 0, (x1, y1) and (x2, y2) are solutions of PVIP(X,
F , ε, µ1) and PVIP(X, F, ε, µ2), respectively, then

α‖x1 − x2‖2+ ε‖y1 − y2‖2 6 m|µ1− µ2| (9)

Proof. Since (x1, y1) and (x2, y2) are solutions of PVIP(X, F, ε, µ1)

and PVIP(X, F, ε, µ2), respectively, we have from (5) and (6)

F(x1)
T (x1− x2)− (∇g(x1)y1)

T (x1− x2) = 0,

F (x2)
T (x2− x1)− (∇g(x2)y2)

T (x2− x1) = 0.

Adding these two equalities, we have(
F(x1)− F(x2)

)T
(x1− x2) = yT1 ∇g(x1)

T (x1− x2)+ yT2 ∇g(x2)
T (x2− x1).

(10)

Using the strong monotonicity ofF and the concavity ofgi(i ∈ I ), and noting
y1 > 0, y2 > 0, one has(

F(x1)− F(x2)
)T
(x1− x2) > α‖x1− x2‖2,

yT1 ∇g(x1)
T (x1− x2) 6 yT1

(
g(x1)− g(x2)

)
,

yT2 ∇g(x2)
T (x2− x1) 6 yT2

(
g(x2)− g(x1)

)
.

Substituting the above inequalities into (10), we obtain

α‖x1 − x2‖2 6 (y1− y2)
T (g(x1)− g(x2)). (11)
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Sincegi(x1)+ εy1i = µ1
y1i
, gi(x2)+ εy2i = µ2

y2i
, i ∈ I , we have

(y1 − y2)
T (g(x1)− g(x2)) = −ε‖y1 − y2‖2+

∑
i∈I

(y1i − y2i)(µ1y2i − µ2y1i)

y1iy2i
.

In view of yk > 0, µk > 0, using Lemma 3.9 in [4], we get

(y1i − y2i)(µ1y2i − µ2y1i) 6 |µ1y1iy2i − µ2y1iy2i | = y1iy2i |µ1− µ2|.
Hence

(y1 − y2)
T (g(x1)− g(x2)) 6 −ε‖y1 − y2‖2+m|µ1− µ2|.

Thus conclude (9) holds from this inequality and (11). 2
THEOREM 5. PVIP(X, F, ε, µ) has at most one solution for allε > 0, µ > 0.
Furthermore, the solution of PVIP(X, F, ε, µ) is continuous in the parameterµ.

Proof. Let (x1, y1), (x2, y2) be two solutions of PVIP(X, F, ε, µ). Let µ1 =
µ2 = µ, and use (9), we haveα‖x1−x2‖2+ε‖y1−y2‖2 6 0, sox1 = x2, εy1 = εy2.
Obviously,y1 = y2 if ε > 0. If ε = 0, using(gi(x1)+ εy1i )y1i = µ = (gi(x2) +
εy2i)y2i > 0, andx1 = x2, one gets directlyy1 = y2. Thus(x1, y1) = (x2, y2). The
continuity follows directly from (9). 2

In the remainder part of this section, we will show PVIP(X, F, ε, µ) has a
unique solution for all parametersε > 0, µ > 0. Our main technique is to trans-
form equivalently PVIP(X, F, ε, µ) into some variational inequality problem which
is known to have a solution. Forε > 0, defineF̃ : Rn × Rm → Rn × Rm, g̃i :
Rn × Rm→ R1, i ∈ I , by

F̃ (x, z) = (F(x), z1, ..., zm
)
, g̃i (x, z) = gi(x)+√εzi, i ∈ I. (12)

Let X̃ = {(x, z)| g̃(x, z) > 0}, we consider the following problem, denoted by
PVIP(X̃, F̃ , µ):

F̃ (x, z)−∇g̃(x, z)y = 0, (13)

g̃i (x, z) > 0, yi > 0, yi g̃i (x, z) = µ, i ∈ I. (14)

LEMMA 4. Vector(x, z, y) is a solution of PVIP(X̃, F̃ , µ) if and only if (x, y)
solves PVIP(X, F, ε, µ) andz = √εy.

Proof.Let ei ∈ Rm be the vectors whoseith component is one and all others are
zero. Since∇g̃i (x, z) =

(∇gi(x),√εei)(i ∈ I ), one knows (13) is equivalent to

F(x) −∇g(x)y = 0, z −√εy = 0. (15)



204 JINBAO JIAN

If (x, z, y) satisfies (13) and (14), then (15) holds. Moreover, (5) holds,zi =√
εyi , yi > 0 and

g̃i (x, z) = gi(x)+√εzi = gi(x)+ εyi > 0,

yi g̃i (x, z) = (gi(x)+ εyi)yi = µ, i ∈ I.
Hence(x, y) solves (5) and (6), i.e., PVIP(X, F, ε, µ).

Conversely, suppose(x, y) solves PVIP(X, F, ε, µ), z = √εy, then(x, z, y)
satisfies (15), i.e., (13) holds for(x, z, y). One has from (6)

yi(gi(x)+ εyi) = yi(gi(x)+
√
εzi) = yi g̃i(x, z) = µ; yi > 0,

gi(x)+ εyi = gi(x)+√εzi = g̃i (x, z) > 0.

Hence(x, z, y) satisfies (14). Moreover, it solves PVIP(X̃, F̃ , µ). 2
LEMMA 5. Let ε > 0.
(i) If F(x) is strongly monotone overRn, thenF̃ (x, z) is strongly monotone over

Rn × Rm.
(ii) If gi(x) is concave overRn, theng̃i (x, z) is concave overRn × Rm.
(iii) If LICQ holds at the solution of VIP(X, F ), then LICQ holds at the solution of

VIP(X̃, F̃ ).
Proof. Parts (i) and (ii) are obvious. We discuss part (iii), first of all ifε > 0,

then the gradient vectors∇g̃i (x, z)(i ∈ I ) are linear independent for all(x, z) ∈
Rn × Rm. If ε = 0, it is known that any solution of VIP(X̃, F̃ ) must be a solu-
tion of VIP(X, F ). Hence LICQ ofX̃ holds since LICQ holds and∇g̃i (x, z) =
(∇gi(x),0). 2
THEOREM 6. SupposeF is strongly monotone, and LICQ holds at the solution of
VIP(X, F ). Then the perturbed variational inequality problems PVIP(X, F, ε, µ)

have a unique solution for allε > 0, µ > 0.
Proof. In view of Theorem 5, it is sufficient to show the existence part. Since

VIP(X̃, F̃ ) satisfies all assumptions of Theorem 3.12 in [3] by Lemma 5, using
Theorem 3.12 in [3], we can conclude that the associated perturbed variational
inequality problems PVIP(X̃, F̃ , µ) have a solution for allε > 0, µ > 0. Thus
problems PVIP(X, F, ε, µ) have a solution for allε > 0, µ > 0 from Lemma 4.2

4. The convergence of the method

In the previous section, we have discussed the existence, uniqueness and continuity
of the solution of PVIP(X, F, ε, µ). In this section, we will prove the solution
(xk, yk) of PVIP(X, F, εk, µk) approaches the unique solution(x∗, y∗) of VIP(X,
F). Let

R+ = {s ∈ R1| s > 0}, R++ = {s ∈ R1| s > 0}.
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LEMMA 6. Letwεµ = (xεµ, yεµ) be the unique soluction of PVIP(X, F, ε, µ)
for ε > 0, µ > 0. If a set� ⊂ R+ × R++ is bounded, then{wεµ| (ε, µ) ∈ �} is
bounded.

Proof. Suppose there existsη > 0 such thatε 6 η,µ 6 η, (ε, µ) ∈ �. Let
µ > 0 be a fixed parameter. From Theorem 6, one knows PVIP(X, F,0, µ) has a
unique solutionw = (x, y). Moreover, we have from (11)

α‖xεµ − x‖2 6 (yεµ − y)T (g(xεµ)− g(x)),

(yεµ − y)T (g(xεµ)− g(x)) = (yεµ − y)T g(xεµ)− yTεµg(x)+ yT g(x).
Since

y > 0, g(xεµ)+ εyεµ > 0, yTεµ(g(xεµ)+ εyεµ) = mµ,
we have

(yεµ − y)T g(xεµ) = − ε(yεµ − y)T yεµ + yTεµ(g(xεµ)+ εyεµ)
− yT (g(xεµ)+ εyεµ)

6 − ε(yεµ − y)T yεµ +mµ.
In view ofg(x) > 0, yεµ > 0, yT g(x) = mµ,we obtain :α‖xεµ−x‖2 6 −ε(yεµ−
y)T yεµ +m(µ+ µ). So

α‖xεµ − x‖2+ ε(yεµ − y)T yεµ 6 m(µ+ µ). (16)

Using (16) and(yεµ − y)T yεµ = ‖yεµ − 1
2y‖2− 1

4‖y‖2, we have

α‖xεµ − x‖2+ ε‖yεµ − 1

2
y‖2 6 m(µ+ µ)+ 1

4
ε‖y‖2,

‖xεµ − x‖2 6 α−1(mη +mµ+ 1

2
η‖y‖2),

which guarantees{xεµ| (ε, µ) ∈ �} is bounded. On the other hand, using (11)
again, we have

06 α‖xεµ − x‖2 6 (yεµ − y)T (g(xεµ)− g(x))
= yTεµg(xεµ)− yTεµg(x)− yT g(xεµ)+ yT g(x)
= mµ− ε‖yεµ‖2− yTεµg(x)− yT g(xεµ)+mµ
6 mµ+mµ− yTεµg(x)− yT g(xεµ).

Hence

yTεµg(x) 6 mµ+mµ− yT g(xεµ)



206 JINBAO JIAN

Since{xεµ| (ε, µ) ∈ �} is bounded andg(.) is continuous, there exists a constant
M > 0 such that−yT g(xεµ) 6 M. ThusyTεµg(x) 6 mη+mµ+M, This inequality
andyεµ > 0, g(x) > 0 conclude{yεµ| (ε, µ) ∈ �} is bounded. So we have finished
the proof of Lemma 6. 2
THEOREM 7. If the parameters{(εk, µk)} chosen in the continuation method are
arbitrary such thatεk > 0, µk > 0, (εk, µk) → (0,0), k → ∞. Then the entire
sequence{wk = (xk, yk)} generated by the continuation method converges to the
unique solution(x∗, y∗) of VIP(X, F ).

Proof. From Lemma 6 and(εk, µk) → (0,0), we know{wk} is bounded, so it
has at least one accumulation point(x̂, ŷ). Since(xk, yk) satisfies (5) and (6), one
has

F(xk)−∇g(xk)yk = 0,

gi(xk)+ εkyki > 0, yki > 0, (gi (xk)+ εkyki)yki = µk, i ∈ I.
In view of (xk, yk, εk, µk)→ (x̂, ŷ,0,0), k ∈ K, and taking limit in above equal-
ities (k ∈ K), one has

F(x̂)+∇g(ŷ)ŷ = 0, gi(x̂) > 0, ŷi > 0, ŷigi(x̂) = 0, i ∈ I.
Thus (x̂, ŷ) is a solution of VIP(X, F ). Moreover,(x̂, ŷ) = (x∗, y∗) since the
solution of VIP(X, F ) is unique.

So we have shown that{wk = (xk, yk)} has a unique accumulation point(x∗, y∗).
Thus the entire sequence{(xk, yk)} converges to the solution(x∗, y∗) of VIP(X, F )
by the boundedness of{(xk, yk)}. 2

5. Numerical results

In this section, two small examples have been solved by the proposed algorithm,
and the numerical results have shown that the proposed algorithm is effective. The
error function is chosen as

err(x, y) = ‖F(x) −
∑
i∈I

yi∇gi(x)‖2 +
∑
i∈I
(min{gi(x), yi})2. (17)

The parameter sequences{εk} and{µk} are chosen in three cases for a same prob-
lem as follows:

εk ≡ 0, µk = (0.5)k+1, k = 0,1,2, · · · , (18)

εo = 0.5, ε1 = (0.5)2, εk =
{

0, k > 2 and kis even,
(0.5)

k+3
2 , k > 3 and kis odd,

µk = (0.5)k+1,

(19)



A COMBINED FEASIBLE-INFEASIBLE POINT CONTINUATION METHOD 207

εk = µk = (0.5)k+1, k = 0,1,2, · · · , (20)

and the vectoryk is omitted in Tables 1–6.
As the parameters are chosen as (18), all iteration pointsxk(k > 0) are feasible

(see Tables 1, 4). As they are chosen as (19), some iteration points are feasible,
but some are infeasible (see Tables 2, 5), i.e., the method is a combined feasible–
infeasible algorithm. When the parameters are chosen as (20), most iteration points
are infeasible (see Tables 3, 6).

EXAMPLE 1. This problem is taken from [7]. Let

F(x) =
 2x1 + 0.2x3

1 − 0.5x2 + 0.1x3 − 4
−0.5x1 + x2+ 0.1x3

2 + 0.5
0.5x1 − 0.2x2 + 2x3 − 0.5

 ,
X = {x ∈ R3 | g(x) = −x2

1 − 0.4x2
2 − 0.6x2

3 + 1> 0}.
It is easily verified that Example 1 has the solutionx∗ = (1.0,0.0,0.0)T . The

computational results for the staring point(xo; yo) = (100.0,10.0,10.0;1.0)T are
shown in Tables 1,2,3, where the parameters sequences{εk} and{µk} are chosen
as (18), (19) and (20), respectively .

EXAMPLE 2. Let

F(x) =
 3.0 −4.0 −16.0

4.0 1.0 −5.0
16.0 5.0 2.0

 x1

x2

x3

 ,
X = {x ∈ R3 | g4(x) = x1+ x2+ x3− 10> 0, gi(x) = xi > 0, i = 1,2,3.}.

Example 2 is a modification of examples used in [8, 9]. The exact solution for
Example 2 isx∗ = (10.0,0.0,0.0)T . The numerical results for solving Example
2 with initial point (xo; yo) = (0.0,12.0,10.0;1.0,1.0,1.0,1.0)T are shown in
Tables 4–6, where the parameter sequences{εk}, {µk} are chosen as (18), (19) and
(20), respectively.
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Table 1. Result for Example 1: parameters are chosen as (18)

Iteration k x1 x2 x3 g(x) err(x, y)

0 100.00000 10.0000000 10.0000000 -10099.0 101989801.00

1 0.8020101 −0.0616438 0.0234837 0.35493 0.1259745456

2 0.8854567 −0.0536393 0.0137003 0.21470 0.0460973285

3 0.9370589 −0.0481093 0.0067434 0.12097 0.0146331537

4 0.9666197 −0.0448084 0.0024483 0.06484 0.0042041891

5 0.9826396 −0.0429830 0.0000268 0.03368 0.0011343702

6 0.9910151 −0.0420198 −0.0012653 0.01718 0.0002952209

7 0.9953029 −0.0415246 −0.0019339 0.00868 0.0000753478

8 0.9974731 −0.0412735 −0.0022740 0.00436 0.0000190380

9 0.9985650 −0.0411472 −0.0024456 0.00219 0.0000045875

10 0.9991126 −0.0410839 −0.0025318 0.00109 0.0000012029

11 0.9993868 −0.0410522 −0.0025750 0.00055 0.0000003040

Table 2. Result for Example 1: parameters are chosen as (19)

Iteration k x1 x2 x3 g(x) err(x, y)

0 100.00000 10.0000000 10.0000000−10099.0 101989801.00

1 0.9731280 −0.0441109 0.0014698 0.05224 0.0027292029

2 0.9814327 −0.0431786 0.0002079 0.03604 0.0012991802

3 0.9370581 −0.0481340 0.0067420 0.12097 0.0146332864

4 1.0164387 −0.0390526 −0.0052974 −0.03377 0.0011407263

5 0.9826398 −0.0429756 0.0000273 0.03368 0.0011343687

6 1.0170676 −0.0389826 −0.0053995 −0.03505 0.0012286349

7 0.9953031 −0.0415170 −0.0019334 0.00868 0.0000753487

8 1.0109067 −0.0397071 −0.0044062 −0.02257 0.0005096235

9 0.9985651 −0.0411395 −0.0024451 0.00219 0.0000047883

10 1.0059498 −0.0402874 −0.0036141 −0.01259 0.0001585655

11 0.9993870 −0.0410445 −0.0025745 0.00055 0.00000003048
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Table 3. Result for Example 1: parameters are chosen as (20)

Iterationk x1 x2 x3 g(x) err(x, y)

0 100.00000 10.0000000 10.0000000 -10099.0 101989801.00

1 0.9731283 −0.0441109 0.0014698 0.05224 0.0027292029

2 0.9814327 −0.0431786 0.0002079 0.03604 0.0012991802

3 0.9884544 −0.0423522 −0.0008708 0.02224 0.0004946186

4 0.9933328 −0.0417422 −0.0016254 0.01259 0.0001585484

5 0.9962779 −0.0414043 −0.0020860 0.00674 0.0000454583

6 0.9979090 −0.0412176 −0.0023421 0.00349 0.0000122179

7 0.9987692 −0.0411196 −0.0024775 0.00178 0.0000031729

8 0.9992112 −0.0410697 −0.0025472 0.00090 0.0000008144

9 0.9994352 −0.0410446 −0.0025884 0.00045 0.0000002078

10 0.9995481 −0.0410322 −0.0026003 0.00023 0.0000000552

Table 4. Result for Example 2: parameters are chosen as (18)

Iterationk x1 = g1(x) x2 = g2(x) x3 = g3(x) g4(x) err(x, y)

0 0.0000000 12.000000 10.000000 12.000000 3.0000000000

1 9.9648510 0.0482032 0.0038433 0.0168976 0.0051416657

2 9.9820220 0.0244470 0.0019224 0.0083914 0.0012990283

3 9.9909069 0.0123120 0.0009614 0.0041812 0.0003265513

4 9.9954270 0.0061792 0.0004807 0.0020870 0.0000818680

5 9.9977069 0.0030953 0.0002404 0.0010426 0.0000207149

6 9.9988517 0.0015491 0.0001202 0.0005211 0.0000051277

7 9.9994255 0.0007749 0.0000601 0.0002605 0.0000022548

8 9.9997126 0.0003875 0.0000300 0.0001302 0.0000004149

9 9.9998563 0.0001938 0.0000150 0.0000651 0.0000000949
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Table 5. Result for Example 2: parameters are chosen as (19)

Iterationk x1 = g1(x) x2 = g2(x) x3 = g3(x) g4(x) err(x, y)

0 0.0000000 12.000000 10.000000 12.000000 3.000000000

1 0.1044820 4.4236752 −2.0922554 −7.5641480 61.61724201

2 0.6171098 6.4273221 −3.0063636 −5.9619322 44.70987272

3 9.9909068 0.0123130 0.0009614 0.0041812 0.000326566

4 1.9764287 7.4448462 −3.5658166 −4.1445417 29.89334052

5 9.9977068 0.0030954 0.0002404 0.0010426 0.000020496

6 4.2760527 6.5637328 −3.3723907 −2.5326051 17.78712612

7 9.9994255 0.0007749 0.0000601 0.0002605 0.000001433

8 6.9098232 4.2557367 −2.5625675 −1.397075 8.518383209

9 9.9998563 0.0001938 0.0000150 0.0000651 0.000000090

Table 6. Result for Example 2: parameters are chosen as (20)

Iterationk x1 = g1(x) x2 = g2(x) x3 = g3(x) g4(x) err(x, y)

0 0.0000000 12.000000 10.000000 12.000000 3.000000000

1 0.1044820 4.4236272 −2.092255 −7.564148 61.61724201

2 0.6171093 6.4273221 −3.006363 −5.961932 44.70987272

3 1.9798724 7.4434382 −3.567583 −4.144273 29.90688757

4 4.2775707 6.5637865 −3.372899 −2.531542 17.78546108

5 6.9101411 4.2561976 −2.562598 −1.396260 8.516529467

6 9.1255582 1.7914574 −1.643263 −0.726247 3.227828695

7 10.5546940 0.0222829 −0.941123 −0.364146 1.018812842

8 10.3568929 −0.0183657 −0.490754 −0.152227 0.264350720

9 10.1964967 −0.0142579 −0.249846 −0.067607 0.067197271

10 10.1028196 −0.0084258 −0.125962 −0.031568 0.016934213

11 10.0525592 −0.0045411 −0.063230 −0.015212 0.004250175

12 10.0265677 −0.0023531 −0.031676 −0.007461 0.001064606

13 10.0133560 −0.0011972 −0.015853 −0.001838 0.000066634

14 10.0033525 −0.0003032 −0.003966 −0.000916 0.000016662

15 10.0016774 −0.0001519 −0.001983 −0.000457 0.000004166

16 10.0008393 −0.0000760 −0.000991 −0.000228 0.000001014

17 10.0004196 −0.0000380 −0.000495 −0.000057 0.000000065
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